
Combinational Logic
The logic gate is the basic building block from which most digital circuits are constructed. Most gates
have a number of inputs, and produce a single output. The signals at the input and output terminals
are either at a HIGH voltage level or at a LOW voltage level, representing the logical '1' or '0'
conditions. Gates will produce one output level according to the combinations of input levels and
the type of gate, and the opposite output when any other combination is present at the inputs. In
this chapter, you will be introduced to the various types of gates and the ways they can be
interconnected to perform different logical functions. The types of gate we will be using are the
AND, OR, NOT, NAND, NOR, XOR and XNOR. We will be using the International standard symbols for
the gates, as per Logic Gate Simulator, and we will assume positive logic, i.e. a higher voltage is a
logical 1 and a lower voltage is a logical 0.

Truth tables list all the possible combinations of the inputs applied to a gate. As we are dealing with
2-state devices, each input can only be at the logic 1 level or the logic 0 level. The output of a logic
gate defines its function, so it is normally labelled as 'F'. The number of combinations is always 2n,
where n is the number of inputs. They may be listed in the binary counting order, that is from 0000
to 1111, alternately they may be listed in the reverse order. This is a matter of personal preference,
but you should make sure that whichever scheme you chose you are consistent in its use. From a
completed truth table a Boolean expression can be created to represent the function of a logic circuit.

Combinational logic circuits are those whose output(s) are determined by the logical states of their
existing input(s). This is in contrast to sequential logic circuits, whose output is set by both the
present input and the previous output state of the circuit.

Basic Gates

The AND logical function.
The AND function can be demonstrated by the circuit in Figure 1. This shows a lamp connected in
series with two switches S1 and S2 and a D.C. voltage supply. For a current to flow through the
circuit and light the lamp, both switches must be closed. The operation of the circuit can be
described by its truth table that is given in Table 1, where a 0 indicates the switch is open (or off) and
a 1 indicates that the switch is closed (or on).

Figure 1

The Boolean expression for the output F of a 2 input AND gate is
given by the equation

 F = A• B

The dot • is the Boolean symbol for the AND logical function but it
is often omitted, hence this could have been written

F = AB

Table 1
A B F
0 0 0
0 1 0
1 0 0
1 1 1

The output F of an AND gate with 3 inputs A, B
and C is

F = A• B •C

The truth table of a 3-input AND gate is given in
Table 2 and shows that the output is at logical 1
only when A and B and C are at 1. Always
remember that the number of combinations of
the input variables is 2n, where n is the number
of variables. So a 4 input gate requires 24 (16)
rows in the truth table.

Activity 1
Figure 2 shows a digital circuit constructed using AND gates. Write down the truth table for the
circuit and use this to simplify the circuit.

Fig. 2

The truth table for the circuit shown is given in Table 3. The final column for this truth table (F = D •
E = A • B • C) is the same as the final column in Table 3.2 for a three input AND gate. Thus, the circuit
shown in Figure 2 can be replaced by a single 3-input AND gate. This is the first indication that it is
often possible to simplify a logic circuit.

Table 3
A B D=A•B C E=A•C F=D·E=A•B•C
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Table 2
A B C F
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

The OR logical function
Current will flow in the circuit shown in Figure 3 if either switch S1 OR switch S2 OR both are closed,
or ON. The only time current will not flow is when BOTH switches are open, or OFF.

An OR gate has two or more inputs and a single output. The output is LOW only when all the inputs
are LOW. The truth table for a two-input OR gate is show in Table 4.

Fig. 3

The Boolean expression for the output F of a 2 input OR gate
is given by the equation

F = A+ B

The plus sign + is the Boolean symbol for the OR logical
function.

The output F of an OR gate with 3 inputs A, B and C is

 F = A+ B+C

The truth table of a 3-input OR gate is given in Table
5 and shows that the output is at logical 1 only when
A or B or C are at 1.

Activity 2
Write down the truth table for the circuit given in Figure 4 and from this show that the circuit can be
obtained in a simpler manner.

Fig. 4

Table 6 shows the truth table for this circuit.

Table 6
A B D=A•B F=D+B=A•B+B
0 0
0 1
1 0
1 1

Table 4
A B F
0 0 0
0 1 1
1 0 1
1 1 1

Table 5
A B C F
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

The output F of the circuit is always the same as the input B, therefore no gates are required since
input B may be directly connected to output F.

Activity 3
Determine the logic circuit corresponding to the truth table given in Table 7

The output F is at logic 1 either if A is 1 OR if B AND C are
both 1. This means that inputs B and C are connected to a
2-input AND gate, and the output from this, together with
input A, are connected to a 0 2-input OR gate. The circuit is
shown in Figure 5.

 F = A + (B • C)

Note that the AND has a higher priority than the OR so this
expression could also be written:

F = A + BC

Fig. 5

Activity 4
Write down the Boolean equations that describe the logic circuits given in figures 6 and 7. Write
down the truth table for each circuit and compare them, and comment on the results.

Fig 6 Fig 7

Table 8

Table 9
A B A•B C B•C F A B C A+C F
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 0
1 1 1 1 1 1

F = A• B + B •C F = (A + C) • B

Table 7
A B C F
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Comparing the columns for F in the two truth tables, it can be seen that these two circuits give
identical outputs. Thus, different combinations of gates can produce the same output. In this example
circuit 7 uses one less gate than circuit 6.

NOT logical function
A NOT gate has a single input and a single output that is always the inverse of the input. If the input
is at logic 1, the output will be at logic 0 and vice versa. The truth table of the NOT gate is given in
table 10. The NOT gate is often known as an inverter and can be said to complement a digital signal.
The complement of an 8-bit binary number is shown in Table 11.

Table 10

Table 11

A F Number 01001101

0 1 Compliment 10110010

1 0

We denote the logical inverse of a value by placing a bar over the value. Hence A is the logical
inverse of A, and is pronounced as "A bar". As you will no doubt be aware the normal

keyboard does not allow for the overbar and you have to use Word's Equation Editor to obtain this
feature. Because of this, you will often find people placing a star after the name, as in A*, to indicate
the inverse. Both the overbar and the trailing bar are acceptable.

Activity 5
Write down the truth table of the circuit shown in Figure 8, then write down the Boolean equation
representing the circuit.

Fig 8

The truth table for the circuit is given in Table 12.
The output F is HIGH when the inputs A and B are
both LOW OR if C is HIGH.

Hence the Boolean expression for the circuit is:

 F = A• B + C

This could also be written:

 F = (A • B) * + C

Table 12

A B A•B A•B C F

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

The NAND logical function
The AND gate and the NOT gate in the previous example may be replaced by a single NAND gate,
which performs the same logical function. That is, it performs the inverse of the AND function, so its
output is LOW only when all its inputs are HIGH. The truth table for a 2- input NAND gate is given in
Table 13 and that for a 3-input NAND gate in Table 14.

Table 13

Table 14

A B A•B A•B A B C A•B•C A•B•C

0 0 0 0 0
0 1 0 0 1
1 0 0 1 0
1 1 0 1 1
 1 0 0
 1 0 1
 1 1 0
 1 1 1

The NAND gate can be manufactured more cheaply than other logic gates, as it requires fewer
transistors in its construction. It is also possible to construct all other gates by using only NAND
gates. In the real world, therefore, many integrated circuits are constructed using only NAND gates.

For instance, a NOT gate may be constructed by using a 2-input NAND gate with the 2 inputs
connected together. Try this with Logic Gate Simulator, and show that it is correct.

The NOR logical function
The output of a NOR gate is the same as that of an OR gate whose output has been inverted. The
NOR logical function can be produced by an OR gate followed by a NOT gate, but more usually a NOR
gate would be used. The truth tables for 2-input and 3-input NOR gates are given in Tables 15 and 16
respectively

Table 15

Table 16

A B A+B A+B A B C A+B+C A+B+C

0 0 0 0 0
0 1 0 0 1
1 0 0 1 0
1 1 0 1 1
 1 0 0
 1 0 1
 1 1 0
 1 1 1

The Exclusive-OR logical function
The exclusive-OR (or XOR, or occasionally EOR) gate has only
two inputs. Its output is HIGH when one or other of its inputs
is HIGH, but not when they are both HIGH or both LOW. It
performs the logical function:

 F = A• B + A• B = A⊕ B

Its truth table is shown in Table 17.

Table 17

A B A⊕B

0 0 0
0 1 1
1 0 1
1 1 0

The XOR gate can be made by combining various other types of gate, and one such combination of
gates that gives the XOR logical behaviour is shown in Figure 9.

Fig 9

The XOR is frequently used to test if two inputs are different.

Using Logic Gate Simulator, you will construct and test two different logic circuits listed below. The
purpose is to demonstrate that both circuits perform the same XOR function. XOR requires two
source operands and returns a single output as indicated by the truth table shown previously in
Table 17.

You will use the AND, the OR and the NOT functions (called gates) to construct the circuit. Please
note that the NOT gate is often also called an Inverter. These gates can represent by use of standard
symbols listed below standard symbols, as shown in Figure 10. In all cases the symbols are drawn
with the inputs from the left and the output towards the right.

Figure 10: AND, OR, and NOT gates

The XOR function can be implemented with two Inverters, two AND gates, and an OR gate, by
connecting them as shown in Figure 11.

Figure 11 – XOR Circuit

Another way of implementing the XOR function is by connecting two inverters, two OR gates, and an
AND gate, as shown in Figure 12.

Figure 12 – XOR Circuit

You will demonstrate that both circuits perform the same function.

Start by constructing the circuit shown Figure 11. by planting two AND gates, an OR gate, and two
inverters on the work area. Before continuing, save the circuit. The next step is to wire up the gates
to create a circuit. Your circuit should now look like as shown in Figure 13.

Figure 13: Wiring gates together

Logic Gate Simulator permits a wire to be connected only between two legal connections. In Figure
13 the inputs to the two inverters and the output of the OR gate aren't connected anywhere. In
order to wire up the inputs and output we need points you can connect the wire to. In this case, you
are going to use the interactive input device to provide an input signal from a push button and the
LED to show the state of the output. You will also record the output of the two AND gates, so you
will have to connect their outputs to LEDs as well. You should add inputs and LEDs to the circuit and
complete the rest of the wiring, as shown in Figure 14.

Figure 14: Completing the circuit

At this stage, you could test the circuit if we wanted. However, you will use the comment tool
(indicated by the cloud symbol on the toolbar) to give the circuit a title. Click on the cloud and then
click on the place at which you wish to add the text to open the text window. This brings in a text
box. Enter the text "XOR circuit" and click Ok to place it on the screen. We also wish to label the
circuit's inputs and outputs. To give a name to an input or output, first select it and then right click to
bring down a menu. You enter the name into the text box and click Ok. Figure 15 shows the circuit
where the inputs and outputs have been labelled with names.

Figure 15: Labelling the circuit and inputs and outputs

You can similarly construct the circuit shown in Figure 12. This circuit requires two inverters, two OR
gates, and one AND gate. Save this circuit in a file named LastnameF_L02. Since you will not record
the outputs of the two OR gates you do not need to connect them to LEDs. You still need to add the
two inputs, and connect the output of the AND gate to an LED. Do not forget all the proper labelling
just as you did in the previous diagram.

Complete the following table for each of the circuits. Validate that they produced the same results.

Inputs Outputs

A B Out Out 2 Out 3

0 0

0 1

1 0

1 1

The exclusive-NOR logical function
The coincidence, or XNOR gate, has two inputs and one output. It produces a logical 1 only when
both its inputs are the same, either HIGH or LOW. If the inputs are different, it produces a logical 0.
The Boolean equation that describes an XNOR gate is therefore:

F = (A • B) + (A • B)

This is the complement of the operation of the XOR gate.

Gates with inverted inputs
All of the previously described logical functions can be performed by using different gates with the
inputs inverted. For instance, if the inputs to an AND gate are inverted, it will perform the function
of a NOR gate. Similarly, if the inputs to a NAND gate are inverted, it performs the function of an OR
gate.

	Basic Gates
	The AND logical function.

	Activity 1
	The OR logical function

	Activity 2
	Activity 3
	Activity 4
	NOT logical function

	Activity 5
	The NAND logical function
	The NOR logical function
	The Exclusive-OR logical function
	The exclusive-NOR logical function
	Gates with inverted inputs

